Academic Journal of International University of Erbil

Journal Homepage: https://ojs.cihanrtv.com/index.php/public

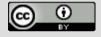
PRINT-ISSN: 2519-6928 Online-ISSN: 3080-7174

Comparative Analysis of Heavy Metal Exposure and Liver Enzyme Levels in Hookah and Cigarette Smokers

Fidan Mohammed^{1*}, Emad Zangana², Kamaran Abdoulrahman³

^{1,2} Department of Chemistry, Faculty of Science and health, Koya University, Koya KOY45, Kurdistan Region-F.R., IRAO

³ Department of Chemistry, College of Science, Salahaddin University-Erbil, 44001, Kurdistan Region, IRAQ


DOI: https://doi.org/10.63841/iue24510

Received 02 Jul 2025; Accepted 16 Jul 2025; Available online 25 Oct 2025

ABSTRACT:

Tobacco consumption, including cigarettes and hookah, remains a major global health concern. This study investigates the impact of cigarette and hookah smoking on liver function and the levels of heavy metals in serum among smokers compared to non-smokers. This project was executed from October 2024 to February 2025 in the Kurdistan area. This time was used to assess the impact of cigarette and hookah smoking on the deposition of heavy metals in blood and liver parameters of smokers compared to nonsmokers. The study involved 200 participants, comprising 80 non-smokers and 120 smokers (60 cigarette and 60 hookah users) aged between 18-70 years. Blood samples were collected, and serum levels of liver enzymes (ALT, AST, ALP, GGT), bilirubin, albumin, were analyzed using a fully automated biochemical analyzer (Mindray BS 240) and trace elements (Ni, Fe, Hg, As, Pb, Cd) were analyzed using Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). The findings revealed that hookah and cigarette smokers exhibited significantly higher levels of liver enzymes (ALT, AST, GGT) and heavy metals (Hg, Pb, Cd) compared to non-smokers. Conversely, ALP and albumin levels were significantly lower among smokers. Notably, the levels of Ni showed no significant differences between groups. The study highlights the heightened exposure to toxic heavy metals and liver dysfunction associated with tobacco use, with hookah smoking posing comparable or even greater risks than cigarette smoking. These results underscore the need for increased awareness and regulatory measures to mitigate the health risks of both cigarette and hookah smoking.

Keywords: Cigarette, Heavy metal, Hookah, Liver enzyme, Smoker.

1 INTRODUCTION

Tobacco is ingested by several methods, including cigarettes, hookahs, and chewing. Tobacco use is a pervasive global concern that not only imposes significant social and economic burdens but also contributes to severe public health challenges. Tobacco use is the second largest cause of mortality globally [1]. It is linked to approximately 8 million deaths annually, primarily due to health complications and co-morbidities associated with smoking [2]. The primary Harmful and Potentially Harmful Constituents (HPHCs) are carbon monoxide (CO), nicotine, particulate matter (PM), volatile organic compounds (VOCs), acrolein, arsenic, and heavy metals. Figure 1 illustrates a comparison of the fold differences of some (HPHCs) between smoking one cigarette (1 g of tobacco) and one session of waterpipe (8-12 g of tobacco) [3]. The plasma nicotine levels after a single session of waterpipe smoking are approximated to be comparable to smoking (2-3) cigarettes [4]. Despite the particulate matter (PM) size supplied during waterpipe smoking being less than that of cigarettes (0.04–0.15 μm against 0.15–0.5 μm), the quantity of PM inhaled in a single waterpipe breath (1L) may attain up to 70×10 -9 particles, in contrast to a cigarette breath (45 ml) which contains 9.2×10 -9 particles [5]. An estimated 1.1 billion individuals globally use tobacco products, with cigarettes being the predominant choice (82%) [6]. Hookah is a tobacco product that is becoming popular in the United States and other nations, especially among the young. Water pipe smoking (WPS), commonly referred to as hookah in Arab and British contexts, shisha in German, narghile in Armenian and Bulgarian, hubble-bubble in India, goza in Egypt, chichi in France, qalyan in Persian, madaa in Yemen, and gaya in Ethiopia, constitutes a method of tobacco consumption practiced by both men and women across the Middle East, Africa, and Asia [7].

Smoking hookah has many harmful effects due to the presence of 4,000 chemical substances in hookah smoke, the majority of which are generated during combustion and are associated with over 40 carcinogenic compounds [8]. Hookah blows more smoke than cigarettes. Cigarettes create 500-600 ml smoke, whereas hookah produces 5000. The use of hookah has gained popularity among adults in Asia and Africa, particularly in the Middle East and Arab nations [9]. Hookah smoke contains more harmful substances than cigarettes. A daily hookah smoker has the same nicotine level as a 10-cigarette smoker. Hookah smoking is linked to cancer, cardiovascular disease, and nicotine addiction, although epidemiological studies are required [10]. Hookah smoke contains significant quantities of carcinogenic substances, including hydrocarbons and heavy metals [11]. Waterpipe use produces elevated levels of carbon monoxide (CO), mostly due to charcoal combustion; substituting charcoal with an electric heater decreases CO emissions from waterpipes by 90% [12]. The carbon monoxide breathed during a waterpipe session is believed to exceed the quantity exhaled after consuming a full pack of cigarettes [13]. The use of waterpipes may generate a significant quantity of volatile organic compounds (VOCs). Employing a standardized smoking machine procedure, a single session of waterpipe smoking resulted in elevations of formaldehyde (27-fold), acrolein (19-fold), methacrolein (4-fold), and propionaldehyde (9-fold) [14]. The origin of heavy metals, including lead (Pb) and chromium (Cr), is believed to be the charcoal used in waterpipe smoking [15].

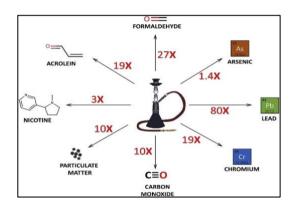


FIGURE 1. Relative amounts of harmful substances in one session of waterpipe tobacco smoke (8–12 g) versus smoking a single cigarette (1g of tobacco)

Heavy metal is characterized as a metal having a specific weight of more than 5 g/cm³ or an atomic number above twenty. Certain heavy metals, such as copper, are requisite and vital for biological functions, metabolism, development, and reproduction [16]. However, they are hazardous at elevated concentrations, including lead, copper, zinc, chromium, and cobalt, which are found at low levels inside human tissue (e.g. ppm) [17, 18]. Liver enzymes, including ALT (Alanine Aminotransferase), AST (Aspartate Aminotransferase), ALP (Alkaline Phosphatase), total bilirubin, albumin, and GGT (Gamma-Glutamyl Transferase), serve as indicators of hepatic function. The harmful consequences of smoking include toxic compounds that induce oxidative stress by lipid peroxidation, resulting in the activation of hepatic stellate cells, liver fibrosis, and heightened production of inflammatory cytokines [19].

2 MATERIAL AND METHODS

2.1 STUDY GROUPS

The study involved 200 participants: 80 controls and 120 smokers (60 hookah smoker and 60 cigarette smoker). All participants were aged between 18-70 years. 5 ml blood sample was drawn from the vein of the participates and centrifuged at 5000 rpm for 10 minutes. The separated serum samples were used to measure the levels of liver function test including (AST, ALT, ALP, GGT, T. Bilirubin and albumin) by full automated biochemical analyzer (Mindray bs-230) brand. Also, the trace elements were measured by using ICP-OES (Agilent Technologies). The Koya University ethical committee (KOUFSDHM2024-002) granted ethical approval for this research on 24/9/2024.

2.2 SAMPLE PREPARATIONS AND DIGESTION

Digestion of samples for heavy metal measurement, (1 ml) of serum from each sample was digested with (9 ml) of 65% nitric acid and (1 ml) of hydrogen peroxide (Merck, Germany). The samples were then immersed in a water bath at 98 °C for 4–6 hours to complete the digestive process and get a translucent solution. Upon completion of digestion, the samples were allowed to cool to ambient temperature for one hour, after which they were diluted with double-distilled water to a final volume of 25 ml. The produced samples were filtered in sterile containers. The processed samples were then transferred for elemental analysis using the ICP-OES instrument. All measurements were conducted by qualified professionals in the laboratory with identical equipment. The concentration of components in the serum was expressed as $(\mu g/l \text{ and } mg/l)$.

2.3 STATISTICAL ANALYSIS

GraphPad Prism Statistics version 10.4.1 was used to analyze the data. The normality test was evaluated by (Shapiro-Wilk and Kolmogorov-Smirnov test) to assay the homogeneity of variance for variables. One-way (ANOVA) test was used to compare the study group. Pearson's correlation test was used to establish a relationship between the antioxidants and the biomarker for oxidative stress. The results were displayed as the mean and standard deviation (SD). A p-value of less than 0.05 was deemed statistically significant.

4 RESULT AND DISCUSSION

Age, economic position, marital status, body mass index, and participant family history are among the general characteristics of the study's groups, as shown in Table 1.

The duration of hookah use was 7.06 ± 4.57 years. The duration of cigarette smoking was 15.08 ± 5.78 years, and each person was smoked 43 ± 15.81 cigarette per day.

For					
Age (year)	Non smoker	Hookah smoker	Cigarette smoker		
	No. (80)	No. (60)	No. (60)		
Age (year)	25.58 ± 6.712	29.64 ± 10.83	40.29 ± 9.145		
	Habitat				
Rural	46 (% 57.5)	34 (% 56.7)	27 (% 45)		
Urban	34 (% 42.5)	26 (% 43.3)	33 (% 55)		
Cigarettes/day	-	-	43 ± 15.81		
Time using hookah or cigarette/hours	-	7.06 ± 4.57	15.08 ± 5.78		
BMI (Kg/m²)	26.45 ± 6.714	27.54 ± 10.80	35.32 ± 9.442		

Table 1. characteristics of the study population

Results are express as mean± SD

The serum of the participants in the current investigation was examined for the presence of some trace elements (heavy metals) as shown in table 2 and figure 2. In the group of non-smokers, all trace elements were showed lower than to another group (Hookah and cigarette) smoker. Heavy metals, including nickel (Ni), iron (Fe), mercury (Hg), arsenic (As), lead (Pb), and cadmium (Cd), may build in the body over time, with serum levels being used as biomarkers to evaluate exposure and associated health hazards [20]. Heavy metal poisoning from smoking may lead to oxidative damage [21]. The concentrations of these metals in blood fluctuate markedly among non-smokers, hookah users, and cigarette smokers, attributable to variations in exposure sources and smoking duration [22]. (Ni) was showed no significant difference between non-smoker (0.0152±0.003 mg/l), cigarette smoker (0.0156±0.0028 mg/l) and hookah smoker (0.0175±0.007 mg/l), this result was accepted with pervious study [23], as in table 2 and figure 1. The iron level was decreased in cigarette (0.1095±0.0890 mg/l) and hookah (0.11950±0.0856 mg/l) smoker as compared to non-smoker (0.2110±0.1071 mg/l), this result was accepted with pervious study [23-25]. The oxygen-carrying capacity of hemoglobin is reduced by the binding of carbon monoxide in tobacco smoke, which in turn affects iron metabolism. Smoking can result in chronic inflammation, which disrupts iron metabolism and absorption [26].

Table 2 also showed a statistically increase in the Hg mean for hookah smokers $(1.4750\pm0.2971~\mu g/L)$, cigarette smoker group $(1.7500\pm0.32687~\mu g/L)$ respectively as compared to Non-smokers group $(0.0358\pm0.00759~\mu g/L)$. The oxygen-carrying capacity of hemoglobin is reduced by the binding of carbon monoxide in tobacco smoke, which in turn affects iron metabolism. Smoking can result in chronic inflammation, which disrupts iron metabolism and absorption [27]. Arsenic level of cigarette and hookah smoker $(8.5000\pm1.9868~\mu g/L)$ $(7.2222\pm1.5635~\mu g/L)$ respectively was showed non-significant elevated as compare to non-smokers group $(6.4000\pm1.8468~\mu g/L)$. The risk of lung, kidney, and bladder malignancies, as well as cardiac disease, is elevated by arsenic exposure from tobacco smoking [23, 28].

The results showed a statistically increase in the Pb value of $(10.600\pm4.115~\mu g/L)$ for hookah smokers, cigarette smoker group $(11.690\pm5.040~\mu g/L)$ as compared to Non-smokers group $(3.5444\pm1.08410~\mu g/L)$. The use of hookah and smoking cigarettes results in the exposure of consumers to lead (Pb), a toxic heavy metal that poses substantial health risks [29]. Smoking both cigarettes and hookahs leads to elevated blood lead levels and increased lead exposure. The fumes may contain even higher concentrations of heavy metals due to the additional use of charcoal in hookahs [30].

The results showed significant increase in the Cd level in hookah smokers $(1.5000\pm0.4218~\mu g/L)$, cigarette smoker group $(1.8950\pm0.3219~\mu g/L)$ as compared to Non-smokers group $(0.45556\pm0.1810~\mu g/L)$. According to research, the concentration of Cd in the blood of tobacco consumers is several times higher than that of non-smokers [20, 31]. The quantity of cadmium in tobacco is contingent upon the analytical method employed to ascertain cadmium, as well as the variety and provenance of the plant [32]. The tobacco plant (Nicotiana tabacum) naturally accumulates cadmium, which is why it is known to be substantially absorbed in cigarette smoke [33, 34]. In tobacco leaves, the concentration of

cadmium ranges from 1 to 2 μ g \times g-1 of dried matter, which is equivalent to 0.5–1 μ g of cadmium per cigarette, and the absorption of cadmium is increased by smoking 20 cigarettes per day [35]. The average daily Cd intake from 20 cigarettes is approximately 1 μ g. Nevertheless, it is presumed that modifications to the design of cigarettes and the refining of tobacco can mitigate the ingestion of cadmium from smoking. Smoking cigarettes for an extended period of time (e.g., 20 years) results in the introduction of approximately 15 mg of cadmium into the smoker's body [36]. that cigarette consumption may lead to higher levels of cadmium than hookah smoking [37]. Cadmium exposure is linked to a variety of health hazards, such as an elevated risk of cancer, bone demineralization, and renal injury. Cadmium accumulation in the body is influenced by the use of both cigarettes and hookahs [38].

Table 2. Levels of trace elements in serum of non-smoker, hookah smoker and cigarette smokers

Heavy metals	Non smoker	Hookah smoker	Cigarette smoker	P value
Ni (mg/L)	0.0152±0.003a	0.0175±0.007a	0.0156±0.0028a	0.3742
Fe (mg/L)	0.2110±0.1071a	0.11950±0.0856b	$0.1095\pm0.0890b$	0.0212
Hg (µg/L)	$0.0358\pm0.00759a$	1.4750±0.2971b	1.7500±0.32687c	0.0007
As (μg/L)	$6.4000 \pm 1.8468ab$	8.5000±1.9868b	$7.2222\pm1.5635a$	0.0035
Pb (μg/L)	3.5444±1.08410a	11.690±5.040b	10.600±4.115b	0.0002
Cd (µg/L)	$0.45556\pm0.1810a$	1.5000±0.4218b	1.8950±0.3219c	< 0.0001

Results are express as mean± SD same letters mean non-significant different different letters mean significant different

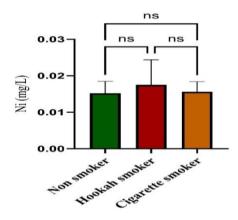


FIGURE 2. Ni level in smoker and nonsmoker

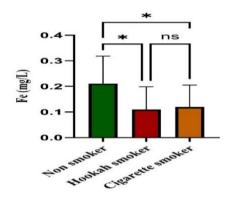


FIGURE 3. Fe level in smoker and nonsmoker

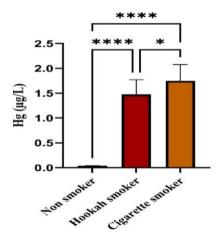


FIGURE 4. Hg level in smoker and nonsmoker

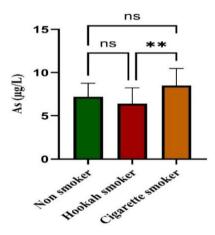
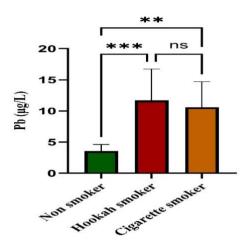



FIGURE 5. As level in smoker and nonsmoker

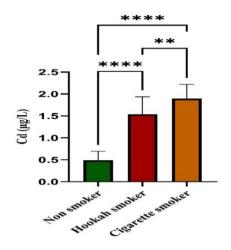


FIGURE 6. Pb level in smoker and nonsmoker

FIGURE 7. Cd level in smoker and nonsmoker

Smoking had an effect on the liver, table 3 and figure 3, shows that compared to non-smokers; smokers liver function was much higher. As an example, blood tests for AST, ALT, total bilirubin, GGT, and albumin were all higher in smoker samples than in nonsmokers, although ALP was lower in smoker samples from both cigarette and hookah use. The effects of smoking on liver function may be responsible for this increase in levels as compared to non-smokers. ALT, AST, TB and GGT was elevated in cigarette and hookah smoker as compared to non-smoker. ALT in non-smoker was (20.64±4.816 IU/L) and in cigarette smoker was (30.08±10.43 IU/L) and hookah smoker was (28.53±10.24 IU/L), this result showed that ALT was significantly increased in cigarette and hookah smoker as compared to non-smoker [39]. Liver damage or inflammation may be suggested by elevated ALT levels. The consequences of smoking, including both cigarettes and hookah [7]. This result showed that AST was significantly increased in cigarette and hookah smoker (55.86±18.10 IU/L) (57.25±21.29 IU/L) respectively, as compared to non-smoker (35.82±6.546 IU/L). Studies demonstrate that smoking correlates with the exacerbation and advancement of liver disorders, notably fibrosis and hepatocellular carcinoma, illnesses often characterized by heightened AST and ALT levels [40]. ALP was decreased in cigarette and hookah smoker (174.3±51.27 IU/L, 163.3±52.17 IU/L), respectively as compared to non-smoker (235.1±39.39 IU/L). Contrary to the results of our study, another study suggest that ALP increased in smoker as compared to non-smoker [39]. Smoking may diminish the absorption of vital nutrients such as zinc and magnesium, which serve as cofactors for ALP synthesis [41]. Heavy smokers may exhibit a poor diet, resulting in decreased protein levels, which may subsequently reduce ALP [42]. Total bilirubin in non-smoker was (0.5722±0.1466 mg/dl) and in cigarette and hookah smoker was (0.7750±0.2221 mg/dl) (0.7611±0.2831 mg/dl) respectively. Cigarette and hookah users often have marginally raised total bilirubin levels, since the carbon monoxide included in these substances may hinder oxygen transport, resulting in enhanced hemoglobin degradation and, thus, increased bilirubin production [39]. As the results showed that GGT was significantly elevated in cigarette and hookah smoker (32.27±12.07 U/L) (34.38±21.62 U/L) respectively as compared to non-smoker (21.39±7.962 U/L). Cigarette smoke contains many heavy metals, including lead, cadmium, and mercury. Oxidative stress in the liver induced by alcohol intake and metabolism attains a critical threshold more readily when compounded by generalized oxidative stress from concomitant smoking. Smoking increases oxidative damage, prompting the creation of GGT as a defensive mechanism [43]. Certain research indicates that serum GGT activity rises after cadmium exposure. Diet is the primary source of environmental cadmium exposure [44]. Tobacco smoking leads to blood cadmium levels in smokers that are 4 to 7 times greater than those in nonsmokers [45].

Table 3. Liver parameters in serum of non-smoker, Hookah smoker and Cigarette smokers.

Liver parameters	Non smoker	Hookah smoker	Cigarette smoker	P value
ALT (IU/L)	20.64±4.816 ^b	28.53±10.24 ^a	30.08±10.43 ^a	0.0179
AST (IU/L)	$35.82{\pm}6.546^{b}$	$57.25{\pm}21.29^a$	$55.86{\pm}18.10^a$	0.0008
ALP (IU/L)	$235.1{\pm}39.39^a$	163.3 ± 52.17^{b}	174.3 ± 51.27^{b}	< 0.0001
TB (mg/dl)	$0.5722{\pm}0.1466^{b}$	$0.7611 {\pm} 0.2831^a$	$0.7750 {\pm} 0.2221^{ab}$	0.0208
GGT (U/L)	$21.39{\pm}7.962^{b}$	$34.38{\pm}21.62^a$	$32.27{\pm}12.07^{ab}$	0.0218
Albumin (gm/dl)	5.092 ± 0.2951^a	$4.840{\pm}0.2157^{b}$	$4.746{\pm}0.1458^{b}$	0.0004

Results are express as mean± SD same letters mean non-significant different different letters mean significant different

Serum cadmium content independently correlates with elevated serum GGT levels. Additionally, serum mercury buildup may have been associated with elevated blood GGT levels [46].

The mean albumin level in cigarette and hookah smoker $(4.746\pm0.1458 \text{ mg/dl})$ $(4.840\pm0.2157 \text{ mg/dl})$ was significantly lower than that of non-smoker $(5.092\pm0.2951 \text{ mg/dl})$. The oxidative stress and inflammatory responses that tobacco smoke induces may be responsible for the decrease in albumin levels among smokers, which can impede protein synthesis and liver function [47].

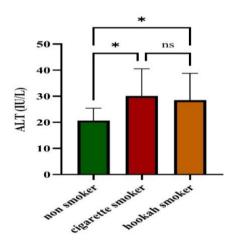


FIGURE 8. ALT level in smoker and non-smoker

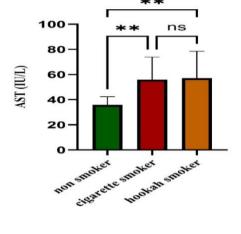


FIGURE 9. ALT level in smoker and non-smoker

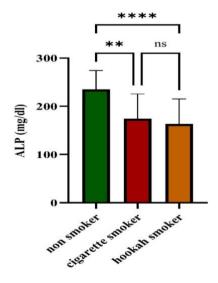


FIGURE 10. ALP level in smoker and non-smoker

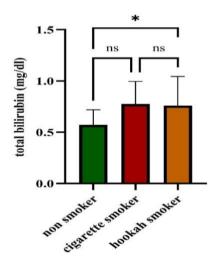
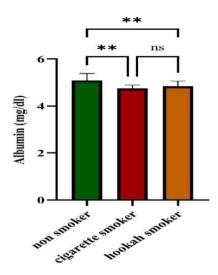



FIGURE 11. TB level in smoker and non-smoker

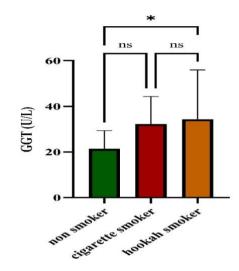


FIGURE 12. Albumin level in smoker and non-smoker

FIGURE 13. GGT level in smok.er and non-smoker

CONCLUSION

This study concludes that hookah and cigarette smoking pose serious health concerns. Many people think hookah is safer than cigarettes, yet regular hookah smoking exposes you to dangerous compounds for a long time. Hookah smoking may cause respiratory infections, cardiovascular issues, and cancer due to chemical inhalation. Hookah smoking has equivalent or higher risks than cigarette smoking for toxic heavy metals and liver damage, according to the research.

These results highlight the need for increased knowledge and regulation to decrease cigarette and hookah health risks. Hookah and cigarette users had greater liver enzymes (ALT, AST, GGT) and heavy metals (Hg, Pb, Cd) than non-smokers. Smokers had considerably lower ALP and albumin levels. Notably, Ni levels were similar across groups.

SOURCES OF FUNDING

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

REFERENCES

- [1] H. He, Z. Pan, J. Wu, C. Hu, L. Bai, and J. Lyu, "Health effects of tobacco at the global, regional, and national levels: results from the 2019 global burden of disease study," Nicotine and Tobacco Research, vol. 24, no. 6, pp. 864-870, 2022.
- [2] Y. Romero, "World Cancer Day 2021: Prevention, awareness and accountability in tobacco control," Tobacco Prevention & Cessation, vol. 7, p. 8, 2021.
- [3] C. Monn, P. Kindler, A. Meile, and O. Brändli, "Ultrafine particle emissions from waterpipes," Tobacco Control, vol. 16, no. 6, pp. 390-393, 2007.
- [4] P. Jacob III et al., "Nicotine, carbon monoxide, and carcinogen exposure after a single use of a water pipe," Cancer epidemiology, biomarkers & prevention, vol. 20, no. 11, pp. 2345-2353, 2011.
- [5] M. Badran and I. Laher, "Waterpipe (shisha, hookah) smoking, oxidative stress and hidden disease potential," Redox biology, vol. 34, p. 101455, 2020.
- [6] G. A. Giovino et al., "Tobacco use in 3 billion individuals from 16 countries: an analysis of nationally representative cross-sectional household surveys," The Lancet, vol. 380, no. 9842, pp. 668-679, 2012.
- [7] E. S. Jang et al., "Effects of coffee, smoking, and alcohol on liver function tests: a comprehensive cross-sectional study," BMC gastroenterology, vol. 12, pp. 1-12, 2012.
- [8] H. Kuper, H. O. Adami, and P. Boffetta, "Tobacco use, cancer causation and public health impact," Journal of internal medicine, vol. 251, no. 6, pp. 455-466, 2002.
- [9] V. Momenabadi, S. Y. Hashemi, and V. R. Borhaninejad, "Factors affecting hookah smoking trend in the society: A review article," Addiction & health, vol. 8, no. 2, p. 123, 2016.
- [10] B. A. Primack, M. Walsh, C. Bryce, and T. Eissenberg, "Water-pipe tobacco smoking among middle and high school students in Arizona," Pediatrics, vol. 123, no. 2, pp. e282-e288, 2009.

- [11] E. Sepetdjian, A. Shihadeh, and N. A. Saliba, "Measurement of 16 polycyclic aromatic hydrocarbons in narghile waterpipe tobacco smoke," Food and Chemical Toxicology, vol. 46, no. 5, pp. 1582-1590, 2008.
- [12] B. Monzer, E. Sepetdjian, N. Saliba, and A. Shihadeh, "Charcoal emissions as a source of CO and carcinogenic PAH in mainstream narghile waterpipe smoke," Food and Chemical Toxicology, vol. 46, no. 9, pp. 2991-2995, 2008.
- [13] W. N. El-Nachef and S. K. Hammond, "Exhaled carbon monoxide with waterpipe use in US students," JAMA, vol. 299, no. 1, pp. 36-38, 2008.
- [14] M. Al Rashidi, A. Shihadeh, and N. Saliba, "Volatile aldehydes in the mainstream smoke of the narghile waterpipe," Food and Chemical Toxicology, vol. 46, no. 11, pp. 3546-3549, 2008.
- [15] Y. Elsayed, S. Dalibalta, and N. Abu-Farha, "Chemical analysis and potential health risks of hookah charcoal," Science of the Total Environment, vol. 569, pp. 262-268, 2016.
- [16] M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda, "Toxicity, mechanism and health effects of some heavy metals," Interdisciplinary toxicology, vol. 7, no. 2, p. 60, 2014.
- [17] G. A. Engwa, P. U. Ferdinand, F. N. Nwalo, and M. N. Unachukwu, "Heavy Metal Toxicity in Humans," Poisoning in the modern world: new tricks for an old dog?, p. 77, 2019.
- [18] K. K. Lawal, I. K. Ekeleme, C. M. Onuigbo, V. O. Ikpeazu, and S. O. Obiekezie, "A review on the public health implications of heavy metals," World Journal of Advanced Research and Reviews, vol. 10, no. 3, pp. 255-265, 2021.
- [19] M. M. Atta, S. G. Hussain, and A. J. Ahmed, "Effect of cigarette smoking on the activity of liver enzyme (AST, ALT, ALP)," Plant Archives, vol. 19, no. 1, pp. 1874-1880, 2019.
- [20] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, and M. Sadeghi, "Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic," Frontiers in pharmacology, vol. 12, p. 643972, 2021.
- [21] M. Ściskalska, M. Zalewska, A. Grzelak, and H. Milnerowicz, "The influence of the occupational exposure to heavy metals and tobacco smoke on the selected oxidative stress markers in smelters," Biological trace element research, vol. 159, no. 1, pp. 59-68, 2014.
- [22] A. Ghaderi et al., "Examining of Heavy Metal Concentrations in Hookah Smokers," Biological Trace Element Research, vol. 201, no. 7, pp. 3185-3192, 2023/07/01 2023, doi: 10.1007/s12011-022-03422-0.
- [23] S. Nakhaee et al., "Comparison of serum concentrations of essential and toxic elements between cigarette smokers and non-smokers," Environmental Science and Pollution Research, vol. 28, no. 28, pp. 37672-37678, 2021/07/01 2021, doi: 10.1007/s11356-021-13290-1.
- [24] A. Vivek, R. M. Kaushik, and R. Kaushik, "Tobacco smoking-related risk for iron deficiency anemia: a case-control study," Journal of addictive diseases, vol. 41, no. 2, pp. 128-136, 2023.
- [25] A. Nakhaee, F. Shahabizadeh, and M. Erfani, "Protein and lipid oxidative damage in healthy students during and after exam stress," Physiology & behavior, vol. 118, pp. 118-121, 2013.
- [26] S. K. Sinha and M. N. Haider, "Tobacco and health effects," Tobacco & Public Health: Tobacco and Community Wellbeing: A Worldwide Health Crisis, vol. 101, 2024.
- [27] P. J. Hać, B. M. Cieślik, and P. Konieczka, "Review of cigars and cigar-type products as potential sources of consumer exposure to heavy metals," Journal of Environmental Science and Health, Part C, vol. 40, no. 2, pp. 172-196, 2022.
- [28] S. A. Shehata, E. A. Toraih, E. A. Ismail, A. M. Hagras, E. Elmorsy, and M. S. Fawzy, "Vaping, environmental toxicants exposure, and lung cancer risk," Cancers, vol. 15, no. 18, p. 4525, 2023.
- [29] R. Rostami et al., "Characteristics and health risk assessment of heavy metals in indoor air of waterpipe cafés," Building and Environment, vol. 190, p. 107557, 2021.
- [30] M. Dehvari and A. Babaei, "Analysis of heavy metals and PAHs in the waste resulting from hookah consumption: Ahvaz City, Iran," Environmental Science and Pollution Research, vol. 29, no. 22, pp. 33130-33137, 2022.
- [31] I. Krzywy, E. Krzywy, J. Peregud-Pogorzelski, K. Łuksza, and A. Brodkiewicz, "Cadmium--is there something to fear?," in Annales Academiae Medicae Stetinensis, 2011, vol. 57, no. 3, pp. 49-63.
- [32] N. Verma and A. Sharma, "Biological Interventions in Bioremediation of Cadmium Poisoning," in Cadmium Toxicity Mitigation: Springer, 2024, pp. 121-145.
- [33] Y. Qing et al., "Dose–response evaluation of urinary cadmium and kidney injury biomarkers in Chinese residents and dietary limit standards," Environmental Health, vol. 20, pp. 1-9, 2021.
- [34] H.-C. Lin, W.-M. Hao, and P.-H. Chu, "Cadmium and cardiovascular disease: An overview of pathophysiology, epidemiology, therapy, and predictive value," Revista Portuguesa de Cardiologia (English Edition), vol. 40, no. 8, pp. 611-617, 2021.

- [35] K. Ganguly, B. Levänen, L. Palmberg, A. Åkesson, and A. Lindén, "Cadmium in tobacco smokers: a neglected link to lung disease?," European Respiratory Review, vol. 27, no. 147, 2018.
- [36] A. E. Charkiewicz, W. J. Omeljaniuk, K. Nowak, M. Garley, and J. Nikliński, "Cadmium toxicity and health effects—a brief summary," Molecules, vol. 28, no. 18, p. 6620, 2023.
- [37] H. Qasim, A. B. Alarabi, K. H. Alzoubi, Z. A. Karim, F. Z. Alshbool, and F. T. Khasawneh, "The effects of hookah/waterpipe smoking on general health and the cardiovascular system," Environmental health and preventive medicine, vol. 24, pp. 1-17, 2019.
- [38] P. Mukti, "Health risk assessment related to cadmium and lead exposure from cigarette smoking among Indonesian smokers in Surakarta, Indonesia: a cross-sectional study," 2021.
- [39] M. Yaseen, S. Alkubaisy, and M. M. Saleh, "Effects of hookah smoking on liver functions, lipid profile, and adult blood count," Biomedicine, vol. 41, no. 4, pp. 763-767, 2021.
- [40] S. M. Rutledge and A. Asgharpour, "Smoking and liver disease," Gastroenterology & Hepatology, vol. 16, no. 12, p. 617, 2020
- [41] J. Baj et al., "Magnesium, calcium, potassium, sodium, phosphorus, selenium, zinc, and chromium levels in alcohol use disorder: a review," Journal of clinical medicine, vol. 9, no. 6, p. 1901, 2020.
- [42] R. Didehdar, F. A. Malayeri, A. Ghaljaeipour, S. Saeedian, and N. KhaliliAghdam, "Effect of Smoking and Type of Nutrition on the Activity of Liver Alanine Aminotransferase and Aspartate Aminotransferase," Tobacco and Health, vol. 1, no. 4, pp. 183-190, 2022.
- [43] M. Galazyn-Sidorczuk, M. M. Brzóska, and J. Moniuszko-Jakoniuk, "Estimation of Polish cigarettes contamination with cadmium and lead, and exposure to these metals via smoking," (in eng), Environ Monit Assess, vol. 137, no. 1-3, pp. 481-93, Feb 2008, doi: 10.1007/s10661-007-9783-2.
- [44] P. D. Adamis, S. C. Mannarino, and E. C. Eleutherio, "Glutathione and gamma-glutamyl transferases are involved in the formation of cadmium-glutathione complex," (in eng), FEBS Lett, vol. 583, no. 9, pp. 1489-92, May 6 2009, doi: 10.1016/j.febslet.2009.03.066.
- [45] T. S. Nawrot et al., "Cadmium exposure in the population: from health risks to strategies of prevention," (in eng), Biometals, vol. 23, no. 5, pp. 769-82, Oct 2010, doi: 10.1007/s10534-010-9343-z.
- [46] S. J. Kim, S. W. Han, D. J. Lee, K. M. Kim, and N. S. Joo, "Higher Serum Heavy Metal May Be Related with Higher Serum gamma-Glutamyltransferase Concentration in Koreans: Analysis of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V-1, 2, 2010, 2011)," (in eng), Korean J Fam Med, vol. 35, no. 2, pp. 74-80, Mar 2014, doi: 10.4082/kjfm.2014.35.2.74.
- [47] K. S. Alsalhen and R. D. Abdalsalam, "Effect of cigarette smoking on liver functions: a comparative study conducted among smokers and non-smokers male in El-beida City, Libya," International Current Pharmaceutical Journal, vol. 3, no. 7, pp. 291-295, 06/07 2014, doi: 10.3329/icpj.v3i7.19077.