Fluorescent [Nd(Anth)₃(H₂O)₃] Complex for determination of some β-lactam antibiotics
Fluorescent [Nd(Anth)₃(H₂O)₃] Complex for determination of some β-lactam antibiotics
DOI:
https://doi.org/10.63841/iue31689Keywords:
[Nd(Anth)3(H₂O)2] complex, Fluorescence quenching, β-lactam antibiotics, pharmaceuticalsAbstract
A luminous neodymium (III) complex, [Nd(Anth)3(H₂O)2], which contains anthranilate ligands, was synthesized and tested as a fluorescent probe for spectrofluorometric detection of three commonly used β-lactam antibiotics; amoxicillin, cefixime, and cephalexin. The addition of these antibiotics greatly quenched the complex's high near-infrared (NIR) emission when excited by UV light. Reproducible, selective, and concentration-dependent fluorescence quenching response was recorded. Linear ranges of 0.1–6.0 µM, 0.2–1.0 µM, and 0.1–6.0 µM for amoxicillin, cefixime, and cephalexin, respectively were recorded with correlation coefficients (R) > 0.98. Competitive limits of detection (LOD) of 0.0980 µg/ml, 0.0025 µg/ml, and 0.1020 µg/ml were captured for amoxicillin, cefixime, and cephalexin, respectively. Analytical parameters such as recovery and RSD were confirmed for the pharmaceuticals without any sophisticated equipment or intricate sample preparation needed in aqueous environments. These findings demonstrate the potential of [Nd(Anth)3(H₂O)2] complex as an optical sensor for β-lactam antibiotics that is both sensitive and selective, offering a useful instrument for environmental monitoring and pharmaceutical quality control. The technique might be used successfully to routinely identify these antibiotics in commercial tablet formulations.
Downloads
References
E. Martens and A. L. J. M. r. Demain, "An overview of the industrial aspects of antibiotic discovery," pp. 149-168, 2017.
Z. Zhu, F. Chen, S. Zhao, Y. Song, and Y. J. M. S. i. S. P. Tang, "Construction of hierarchical core-shell Z-scheme heterojunction FeVO4@ ZnIn2S4 for boosted photocatalytic degradation of tetracycline," vol. 159, p. 107373, 2023.
A. Yazidi et al., "Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis," vol. 379, p. 122320, 2020.
T. Verma, A. Aggarwal, S. Singh, S. Sharma, and S. J. J. J. o. M. S. Sarma, "Current challenges and advancements towards discovery and resistance of antibiotics," vol. 1248, p. 131380, 2022.
F. M. Mpatani et al., "A review of treatment techniques applied for selective removal of emerging pollutant-trimethoprim from aqueous systems," vol. 308, p. 127359, 2021.
P. Karungamye, A. Rugaika, K. Mtei, and R. J. J. o. X. Machunda, "A review of methods for removal of ceftriaxone from wastewater," vol. 12, no. 3, pp. 223-235, 2022.
C. O. Wilson, J. M. Beale, and J. H. Block, Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry. Baltimore, MD: Lippincott Williams & Wilkins, 2011.
K. SV, S. J. I. J. o. C. HG, and P. Analysis, "VALIDATED AUC METHOD FOR THE SPECTROPHOTOMETRIC ESTIMATION OF CEFADROXIL IN BULK AND TABLET DOSAGE FORM," vol. 7, no. 2, 2020.
E. K. Pylova, T. S. Sukhikh, A. Prieto, F. Jaroschik, and S. N. J. M. Konchenko, "Chemistry of 2-(2′-Aminophenyl) benzothiazole Derivatives: Syntheses, Photophysical Properties and Applications," vol. 30, no. 8, p. 1659, 2025.
B. A. de Marco, J. S. H. Natori, S. Fanelli, E. G. Tótoli, and H. R. N. Salgado, "Characteristics, properties and analytical methods of amoxicillin: a review with green approach," Critical reviews in analytical chemistry, vol. 47, no. 3, pp. 267-277, 2017.
J. R. Anacona and J. Estacio, "Synthesis and antibacterial activity of cefixime metal complexes," Transition Metal Chemistry, vol. 31, no. 2, pp. 227-231, 2006.
J. R. Anacona and I. J. J. o. C. C. Rodriguez, "Synthesis and antibacterial activity of cephalexin metal complexes," vol. 57, no. 15, pp. 1263-1269, 2004.
A. Nasiri et al., "Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: a critical review," vol. 146, no. 20, pp. 6049-6063, 2021.
R. Ali and M. M. J. F. C. El-Wekil, "A dual-recognition-controlled electrochemical biosensor for selective and ultrasensitive detection of acrylamide in heat-treated carbohydrate-rich food," vol. 413, p. 135666, 2023.
M. Zermane et al., "Modeling approach for Ti3C2 MXene-based fluorescent aptasensor for amoxicillin biosensing in water matrices," vol. 360, p. 121072, 2024.
M. R. L. Stone, M. S. Butler, W. Phetsang, M. A. Cooper, and M. A. J. T. i. b. Blaskovich, "Fluorescent antibiotics: new research tools to fight antibiotic resistance," vol. 36, no. 5, pp. 523-536, 2018.
A. Golcu, B. Dogan, and S. A. J. T. Ozkan, "Anodic voltammetric behavior and determination of cefixime in pharmaceutical dosage forms and biological fluids," vol. 67, no. 4, pp. 703-712, 2005.
J.-C. G. J. C. r. Bünzli, "Lanthanide luminescence for biomedical analyses and imaging," vol. 110, no. 5, pp. 2729-2755, 2010.
T. Behrsing, G. B. Deacon, and P. C. Junk, "The chemistry of rare earth metals, compounds, and corrosion inhibitors," in Rare Earth-Based Corrosion Inhibitors: Elsevier, 2014, pp. 1-37.
A. Karmakar, P. Samanta, S. Dutta, and S. K. J. C. A. A. J. Ghosh, "Fluorescent “turn‐on” sensing based on metal–organic frameworks (MOFs)," vol. 14, no. 24, pp. 4506-4519, 2019.
S. A. Younis, N. Bhardwaj, S. K. Bhardwaj, K.-H. Kim, and A. J. C. C. R. Deep, "Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications," vol. 429, p. 213620, 2021.
S. V. Eliseeva and J.-C. G. J. C. S. R. Bünzli, "Lanthanide luminescence for functional materials and bio-sciences," vol. 39, no. 1, pp. 189-227, 2010.
S. Jana, R. P. Ojha, R. Shyam, R. J. S. A. P. A. M. Prakash, and B. Spectroscopy, "Isoniazid (INH) a tuberculosis drug detection using turn-off fluorescent [Ce (o-Van) 3 (H2O) 3] probe in real samples," vol. 337, p. 126057, 2025.
S. Jana, R. P. Ojha, R. J. S. A. P. A. M. Prakash, and B. Spectroscopy, "A novel turn-on fluorescence sensor based on the Nd (III) complex for the ultrasensitive detection of 6-mercaptopurine," vol. 313, p. 124056, 2024.
D. M. Pavlović, S. Babić, A. J. Horvat, and M. J. T. T. i. A. C. Kaštelan-Macan, "Sample preparation in analysis of pharmaceuticals," vol. 26, no. 11, pp. 1062-1075, 2007.
Y. Shi, G. Naren, Y. Zhang, J. Han, A. J. O. Bohnuud, and L. Technology, "Synthesis, Structures, optical properties and DFT studies of neodymium complexes containing octanoyl amino carboxylic acids," vol. 155, p. 108445, 2022.
T. M. Lovestead and K. J. A. H. Urness, UK, "Gas Chromatography-Mass Spectrometry (GC-MS)," 2019.
S. Nasiri et al., "Modified Scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5," vol. 3, p. 100015, 2023.
A. Khalil, A. Shaaban, M. Azab, A. Mahmoud, and A. J. J. o. P. R. Metwally, "Synthesis, characterization and morphology of polyanthranilic acid micro-and nanostructures," vol. 20, no. 6, p. 142, 2013.
M. Nawaz et al., "Synthesis of metal anthranilate complexes: catalytic and antipathogenic studies," vol. 16, no. 1, p. 21, 2022.
C. A. Southern, D. H. Levy, G. M. Florio, A. Longarte, and T. S. J. T. J. o. P. C. A. Zwier, "Electronic and infrared spectroscopy of anthranilic acid in a supersonic jet," vol. 107, no. 20, pp. 4032-4040, 2003.
J.-C. G. Bünzli and S. V. Eliseeva, "Basics of lanthanide photophysics," in Lanthanide luminescence: photophysical, analytical and biological aspects: Springer, 2010, pp. 1-45.
M. Hasegawa, H. Ohmagari, H. Tanaka, K. J. J. o. P. Machida, and P. C. P. Reviews, "Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water-and molecular-stimuli," vol. 50, p. 100484, 2022.
A. Nardecchia, V. Motto-Ros, and L. J. A. C. A. Duponchel, "Saturated signals in spectroscopic imaging: why and how should we deal with this regularly observed phenomenon?," vol. 1157, p. 338389, 2021.
B. J. I. C. F. Yan, "Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids," vol. 8, no. 1, pp. 201-233, 2021.
G. Nocton, A. Nonat, C. Gateau, and M. J. H. C. A. Mazzanti, "Water Stability and Luminescence of Lanthanide Complexes of Tripodal Ligands Derived from 1, 4, 7‐Triazacyclononane: Pyridinecarboxamide versus Pyridinecarboxylate Donors," vol. 92, no. 11, pp. 2257-2273, 2009.
B. Monteiro et al., "Lanthanide-based complexes as efficient physiological temperature sensors," vol. 277, p. 125424, 2022.
D. J. A. o. C. R. Escudero, "Revising intramolecular photoinduced electron transfer (PET) from first-principles," vol. 49, no. 9, pp. 1816-1824, 2016.
C. Alexander, "Exploring new paths towards biological anion recognition by lanthanide complexes," University of Oxford, 2022.
J. R. Lakowicz, Principles of fluorescence spectroscopy. Springer, 2006.
R. Otto, M. R. Ferguson, K. Marro, J. W. Grinstead, and S. D. J. P. r. Friedman, "Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron-loaded liver," vol. 41, no. 10, pp. 1259-1265, 2011.
J. M. Ha, S. H. Hur, A. Pathak, J.-E. Jeong, and H. Y. J. N. A. M. Woo, "Recent advances in organic luminescent materials with narrowband emission," vol. 13, no. 1, p. 53, 2021.
K. J. C. C. R. Binnemans, "Interpretation of europium (III) spectra," vol. 295, pp. 1-45, 2015.
H. Yang, G. Ran, J. Yan, H. Zhang, and X. Hu, "A sensitive fluorescence quenching method for the detection of tartrazine with acriflavine in soft drinks," Luminescence, vol. 33, no. 2, pp. 349-355, 2018.
V. Pandey and T. J. L. Pandey, "Spectroscopic Visualization of Drug–Biomolecules Interactions: An Insight to Fluorescence Quenching as Tool in Drug Discovery," vol. 40, no. 4, p. e70168, 2025.
F. Pena-Pereira, W. Wojnowski, and M. J. A. c. Tobiszewski, "AGREE—Analytical GREEnness metric approach and software," vol. 92, no. 14, pp. 10076-10082, 2020.
S. P. Pawar et al., "Fluorescence‐based sensor for selective and sensitive detection of amoxicillin (Amox) in aqueous medium: Application to pharmaceutical and biomedical analysis," vol. 32, no. 6, pp. 918-923, 2017.
A. Muthukumar and S. J. J. o. F. Kalaiyar, "Fluorescence Entrenched Probe for Onsite Detection of Amoxicillin Residue in Bovine Milk," pp. 1-12, 2024.
X. Zhang, Y. Ren, Z. Ji, and J. J. J. o. M. L. Fan, "Sensitive detection of amoxicillin in aqueous solution with novel fluorescent probes containing boron-doped carbon quantum dots," vol. 311, p. 113278, 2020.
K. F. Azeez, A. Salimi, H. J. S. Mohtasham, and A. Reports, "Ratiometric fluorescence quantitation of amoxicillin based on CDs@ Eu-MOFs incorporated 3D hydrogel using smartphone-assisted portable dual mode visual sensing," vol. 9, p. 100262, 2025.
F. Akhgari, N. Samadi, and K. J. J. o. f. Farhadi, "Fluorescent carbon dot as nanosensor for sensitive and selective detection of cefixime based on inner filter effect," vol. 27, no. 3, pp. 921-927, 2017.
N. Bukhari, A. A. Al-Warthan, S. M. Wabaidur, Z. A. Othman, M. Javid, and S. J. S. L. Haider, "Spectrofluorimetric determination of cefixime in pharmaceutical preparation and biological fluids using calcein as a fluorescence probe," vol. 8, no. 2, pp. 280-284, 2010.
J. Shah, M. R. Jan, S. Shah, and I. J. J. o. fluorescence, "Spectrofluorimetric method for determination and validation of cefixime in pharmaceutical preparations through derivatization with 2-cyanoacetamide," vol. 21, no. 2, pp. 579-585, 2011.
J. L. Manzoori, M. Amjadi, N. Soltani, and A. J. I. j. o. b. m. s. Jouyban, "Spectrofluorimetric determination of cefixime using terbium-danofloxacin probe," vol. 17, no. 4, p. 256, 2014.
A.-Y. Hao et al., "A smartphone-combined ratiometric fluorescence probe for specifically and visibly detecting cephalexin," vol. 249, p. 119310, 2021.
L. Li, Q. Zhang, Y. Ding, X. Cai, S. Gu, and Z. J. A. M. Cao, "Application of l-cysteine capped core–shell CdTe/ZnS nanoparticles as a fluorescence probe for cephalexin," vol. 6, no. 8, pp. 2715-2721, 2014.
S. Sahu, M. Karuppusamy, S. J. B. Easwaramoorthi, and B. X, "Water-dispersible polymer coated silica nanoparticle for turn-on fluorometric detection of Cephalexin," vol. 12, p. 100231, 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Academic Journal of International University of Erbil

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.









